УДК 519.642.8

ЧИСЛЕННЫЙ МЕТОД РЕШЕНИЯ ОБРАТНЫХ ЗАДАЧ, ПОРОЖДЕННЫХ ВОЗМУЩЕННЫМИ САМОСОПРЯЖЕННЫМИ ОПЕРАТОРАМИ, МЕТОДОМ РЕГУЛЯРИЗОВАННЫХ СЛЕДОВ

© 2013 С.И. Кадченко¹

В статье разработан новый метод решения обратных задач порожденных возмущенными самосопряженными операторами по их спектральным характеристикам. Метод был проверен на обратных задачах для операторов типа Штурма — Лиувилля. Результаты многочисленных расчетов показали вычислительную эффективность метода.

Ключевые слова: обратная спектральная задача, теория возмущений, самосопряженные операторы, собственные числа, собственные функции, некорректно поставленные задачи.

Введение

В работах [1–6] был разработан численный метод вычисления собственных значений полуограниченных снизу дискретных операторов, который, по предложению автора статьи, был назван методом *регуляризованных следов* (РС). На основе построенной теории в статье разработан новый метод, позволяющий решать обратные спектральные задачи, порожденные дискретными полуограниченными снизу операторами заданными в гильбертовом пространстве.

Рассмотрим задачу нахождения собственных значений оператора T+P

$$(T+P)u = \beta u,$$

где T — дискретный полуограниченный снизу оператор, P — ограниченный оператор, заданные в сепарабельном гильбертовом пространстве H. Допустим, что известны собственные значения $\{\mu_n\}_{n=1}^{\infty}$ и ортонормированные собственные функции $\{\omega_n\}_{n=1}^{\infty}$ оператора T, которые занумерованы в порядке возрастания собственных значений μ_n по величине с учетом кратности. Обозначим через ν_n кратность собственного значения μ_n , а количество всех неравных друг другу собственных значений μ_n , которые лежат внутри окружности T_{n_0} радиуса $\rho_{n_0} = \frac{|\mu_{n_0+1} + \mu_{n_0}|}{2}$ с центром в начале координат комплексной плоскости, через n_0 . Пусть $\{\beta_n\}_{n=1}^{\infty}$ — собственные значения оператора T+P, занумерованные в порядке возрастания их действительных частей с учетом алгебраической кратности. Если для всех $n \in N$

¹Кадченко Сергей Иванович (kadchenko@masu.ru), кафедра уравнений математической физики Южно-Уральского государственного университета (Национального исследовательского университета), 454080, Российская Федерация, г. Челябинск, пр. Ленина, 76.

24 С.И. Кадченко

выполняются неравенства $q_n=\frac{2\|P\|}{|\mu_{n+\nu_n}-\mu_n|}<1$, тогда первые $m_0=\sum_{n=1}^{n_0}\nu_n$ собственные значения $\{\beta_n\}_{n=1}^{m_0}$ оператора T+P являются решениями системы m_0 нелинейных уравнений вида [8]

$$\sum_{k=1}^{m_0} \beta_k^p = \sum_{k=1}^{m_0} \mu_k^p + \sum_{k=1}^{\infty} \alpha_k^{(p)}(m_0), \quad p = \overline{1, m_0}.$$
 (1)

Здесь $\alpha_k^{(p)}(m_0) = \frac{(-1)^k p}{2\pi k i} Sp \int\limits_{T_{n_0}} \mu^{p-1} \Big[PR_\mu(T) \Big]^k d\mu - k$ -е поправки теории возмущений оператора T+P целого порядка $p,\ R_\mu(T)$ — резольвента оператора T.

Известно, что в этом случае контур T_{n_0} содержит одинаковое количество собственных значений операторов T и T+P [8].

Система уравнений (1) лежит в основе численного метода PC, позволяющего находить собственные значения возмущенных самосопряженных операторов в том случае, когда самосопряженные операторы имеют собственные значения с произвольной кратностью.

В работе [5] показано, что если T- дискретный полуограниченный снизу оператор, а P- ограниченный оператор, действующие в сепарабельном гильбертовом пространстве H, при этом система собственных функций $\{\omega_k\}_{k=1}^{\infty}$ оператора T является базисом H, и существует $n_0 \in N$ такое, что для всех $n \in N$ выполняются неравенства $q_n < 1$, тогда

$$\sum_{k=1}^{\infty} \alpha_k^{(p)}(m_0) = Sp\mathbf{A}^p - \sum_{k=1}^{m_0} \mu_k^p + \delta_p(m_0), \quad p = \overline{1, m_0},$$
 (2)

$$|\delta_1(m_0)| \le \Big| \sum_{k=2}^{t_1} \alpha_k^{(1)}(m_0) \Big| + n_0 \rho_{n_0} \frac{q^{t_1+1}}{1-q}, \quad q = \max_{n \ge 1} q_n, \quad t_1 \in N,$$

$$|\delta_p(m_0)| \le \Big| \sum_{k=2}^{t_p} \alpha_k^{(p)}(m_0) - \sum_{j_1=1}^{m_0} \Big(\sum_{m=0}^{p-2} C_p^m \mu_{j_1}^m V_{j_1 j_1}^{p-m} + \Big) \Big|$$

$$+ \sum_{j_2,\dots,j_p=1,\bigcap_{n=1}^p \{j_n\}=\varnothing}^{m_0} \prod_{s=1}^p a_{j_sj_r} \Big) \Big| + p n_0 \rho_{n_0}^p \frac{q^{t_p+1}}{1-q}, \quad p = \overline{2,m_0}, \quad t_p \in \mathbb{N}.$$

Здесь $\delta_p(m_0) = \sum_{k=1}^{m_0} [\beta_k^p - \widetilde{\beta}_k^p(m_0)], \ \{\widetilde{\beta}_k(m_0)\}_{k=1}^{m_0} - n$ приближенные значения по Бубнову — Галеркину соответствующих собственных значений $\{\beta_k\}_{k=1}^{m_0}$ оператора $T+P, \ \mathbf{A} = \|a_{km}\|_{k,m=1}^{m_0}, \ a_{km} = \mu_k \delta_{km} + V_{km}, \ \delta_{km} - c$ имвол Кронекера, $V_{km} = (P\omega_k, \omega_m), \ r = \begin{cases} s+1, \ s \neq p, \\ 1, \ s = p. \end{cases}$ След р-й степени матрицы \mathbf{A} вычисляется по формуле

$$Sp\mathbf{A}^{p} = \sum_{j_{1}, j_{2}, \dots, j_{p}=1}^{m_{0}} \prod_{s=1}^{p} a_{j_{s}j_{r}}.$$
(3)

Формулы (3) были подобраны во время численных расчетов величин $Sp\mathbf{A}^p$ и многократно проверялась при $1\leqslant p\leqslant 35$.

1. Формулы вычисления собственных значений методом PC

В данном разделе получим простые формулы, позволяющие с высокой вычислительной эффективностью находить собственные значения дискретного полуограниченного снизу оператора вида T+P, если собственные значения и собственные функции оператора T известны.

Теорема 1 Пусть T — дискретный полуограниченный снизу оператор, а P — ограниченный оператор, действующие в сепарабельном гильбертовом пространстве H. Если для всех $n \in N$ выполняются неравенства $q_n < 1$ и собственные функции $\{\omega_n\}_{n=1}^{\infty}$ оператора T являются базисом в H, то собственные значения $\{\beta_n\}_{n=1}^{m_0}$ оператора T + P вычисляются по формулам:

$$\beta_n = \mu_n + (P\omega_n, \omega_n) + \widetilde{\delta}_1(n), \quad n = \overline{1, m_0}, \tag{4}$$

 $\operatorname{ede} \ |\widetilde{\delta}_1(n)| \leqslant (2n-1)\rho_n \frac{q^2}{1-q}, \ \widetilde{\delta}_1(n) = \delta_1(n) - \delta_1(n-1).$

Доказательство. Йз системы уравнений (1) для $m_0=n$ и $m_0=n-1$ при p=1 получим

$$\sum_{k=1}^{n} \beta_k = \sum_{k=1}^{n} \mu_k + \sum_{k=1}^{\infty} \alpha_k^{(1)}(n), \tag{5}$$

$$\sum_{k=1}^{n-1} \beta_k = \sum_{k=1}^{n-1} \mu_k + \sum_{k=1}^{\infty} \alpha_k^{(1)}(n-1).$$
 (6)

Вычитая из уравнения (5) уравнение (6), найдем

$$\beta_n = \mu_n + \sum_{k=1}^{\infty} [\alpha_k^{(1)}(n) - \alpha_k^{(1)}(n-1)]. \tag{7}$$

Используя (2), имеем

$$\sum_{k=1}^{\infty} [\alpha_k^{(1)}(n) - \alpha_k^{(1)}(n-1)] = Sp\mathbf{A}(n) - Sp\mathbf{A}(n-1) - \mu_n + \widetilde{\delta}_1(n).$$
 (8)

Из равенства (3) получаем

$$Sp\mathbf{A}(n) - Sp\mathbf{A}(n-1) = \mu_n + (P\omega_n, \omega_n). \tag{9}$$

Подставляя равенства (8) и (9) в (7), найдем формулы (4).

Используя соотношения (2), найдем оценки погрешностей $\delta_1(n)$ вычисления собственных значений оператора T+P

$$|\tilde{\delta}_1(n)| = |\delta_1(n) - \delta_1(n-1)| \le |\delta_1(n)| + |\delta_1(n-1)| \le$$

$$\le \left[n\rho_n + (n-1)\rho_{n-1} \right] \frac{q^2}{1-q} \le (2n-1)\rho_n \frac{q^2}{1-q}.$$

Используя формулы (4), построим численный метод решения обратных задач, порожденных возмущенными самосопряженными операторами.

2. Решение обратных задач методом РС

Рассмотрим задачу восстановления потенциала P по собственным значениям $\{\mu_n\}_{n=1}^{\infty}$ и собственным функциям $\{\omega_n\}_{n=1}^{\infty}$ оператора T и собственным значениям

 $\{\beta_n\}_{n=1}^{\infty}$ оператора T+P в гильбертовом пространстве $L_2(a,b)$, где (a,b) — интервал изменения переменной s. Пусть T — дискретный полуограниченный снизу оператор, а P — ограниченный оператор умножения на функцию p(s). Если для всех $n \in N$ выполняются неравенства $q_n < 1$ и собственные функции $\{\omega_n\}_{n=1}^{\infty}$ оператора T является базисом в $L_2(a,b)$, то согласно теореме 1 собственные значения $\{\beta_n\}_{n=1}^{m_0}$ оператора T+P вычисляются по формулам:

$$\beta_n = \mu_n + \int_a^b \omega_n^2(s) p(s) ds + \tilde{\delta}_1(n), \quad n = \overline{1, m_0}.$$

Рассмотрим интегральное уравнение Фредгольма первого рода

$$Ap \equiv \int_{a}^{b} K(x,s)p(s)ds = f(x), \quad c \leqslant x \leqslant d, \tag{10}$$

где функции f(x) и K(x,s) такие, что

$$f(x_n) = \beta_n - \mu_n - \tilde{\delta}_1(n), \quad K(x_n, s) = \omega_n^2(s), \quad c \leqslant x_n \leqslant d, \quad n = \overline{1, m_0}.$$

Пусть ядро интегрального уравнения (10) K(x,s) непрерывно и замкнуто в квадрате $\Pi = [a,b] \times [c,d]$, а функции $p(s) \in W_2^1[a,b]$ и $f(x) \in L_2[c,d]$.

Задача решения интегрального уравнения фредгольма первого рода (10) является некорректно поставленной. Ее приближенное решение может быть найдено с помощью метода регуляризации Н.А. Тихонова [9–10]. Численное решение уравнения (10) будет определять значения функции p(s) в узловых точках $s_i,\ i=\overline{1,I},\ a=s_1< s_2<\ldots< s_I=b$. Число узловых точек I можно выбрать достаточно большим, чтобы получить хорошую точность при интерполяции функции p(s).

3. Численный эксперимент

Проиллюстрируем разработанный метод на следующей задачи Штурма — Ли-увилля

$$\begin{cases}
-u'' + p(s) & u = \beta \ u, \quad a < s < b; \\
\cos \alpha \ u'(a) + \sin \alpha \ u(a) = 0; \\
\cos \gamma \ u'(b) + \sin \gamma \ u(b) = 0, \quad \alpha, \gamma \in R.
\end{cases}$$
(11)

Рассмотрим оператор $T\omega \equiv -\omega''$, причем функция ω удовлетворяет граничным условиям (11). Нетрудно показать, что оператор T самосопряженный и его собственные числа являются решением трансцендентного уравнения

$$[\sin \alpha \sin(\sqrt{\mu}a) + \sqrt{\mu}\cos \alpha \cos(\sqrt{\mu}a)] \times \\ \times [\sin \gamma \cos(\sqrt{\mu}b) - \sqrt{\mu}\cos \gamma \sin(\sqrt{\mu}b)] + \\ + [\sqrt{\mu}\cos \alpha \sin(\sqrt{\mu}a) - \sin \alpha \cos(\sqrt{\mu}a)] \times \\ \times [\sin \gamma \sin(\sqrt{\mu}b) + \sqrt{\mu}\cos \gamma \cos(\sqrt{\mu}b)] = 0,$$

а собственные функции имеют вид:

$$\omega_n(s) = C_n\{ [\sin \alpha \sin(\sqrt{\mu_n}a) + \sqrt{\mu_n}\cos \alpha \cos(\sqrt{\mu_n}a)]\cos(\sqrt{\mu_n}s) + [\sqrt{\mu_n}\cos \alpha \sin(\sqrt{\mu_n}a) - \sin \alpha \cos(\sqrt{\mu_n}a)]\sin(\sqrt{\mu_n}s) \}, \quad n = \overline{1, \infty}.$$

Здесь $\{\mu_n\}_{n=1}^{\infty}$ — собственные значения оператора T. Постоянные C_n находятся из условия нормировки.

При проведении численных экспериментов вначале, задавая функцию p(s), вычислялись собственные значения $\{\beta_n\}_{n=1}^{m_0}$ задачи Штурма — Лиувилля (11) по

формулам (4) $(\widetilde{\delta}_1(n)=0,\ n=\overline{1,m_0})$ и с помощью метода Бубнова — Галеркина. Собственные значения, найденные по формулам (4) в табл. 1, обозначены $\widetilde{\beta}_n$, а методом Бубнова — Галеркина — $\widehat{\beta}_n$. Один из результатов приближенных расчетов собственных значений $\{\beta_n\}_{n=1}^{m_0}$ задачи (11) приведен в табл. 1. Расчет был выполнен при $m_0=31,\ a=0,\ b=1,\ c=\mu_1,\ d=\mu_{m_0},\ \alpha=\pi/8,\ \gamma=\pi/2,\ p(s)==(1+i)s.$

Результаты расчетов показывают, что найденные собственные значения задачи (11) по формулам (4) и с помощью метода Бубнова — Галеркина хорошо согласуются. Надо отметить, что по мере возрастания номера n собственного значения абсолютная погрешность $|\widetilde{\beta}_n - \widehat{\beta}_n|$ уменьшается.

Кроме того, время, затраченное персональным компьютером при вычислении первых собственных значений оператора T+P методом PC, меньше, чем при вычислении методом Бубнова — Галеркина. При этом чем больше номер вычисляемого собственного значения, тем больше разница во времени вычислений. Это связано с тем, что для вычисления собственных значений $\{\beta_n\}_{n=1}^{m_0}$ оператора T+P методом Бубнова — Галеркина надо находить собственные значения матрицы порядка $n\times n$, а для их вычисления методом PC используются простые для вычислений формулы (4).

Таблица 1

	T		
n	\widetilde{eta}_n	\widehat{eta}_n	$ \widetilde{\beta}_n - \widehat{\beta}_n $
1	1,843707 + 0,278536i	1,843669 + 0,274578i	0,00395801
2	21,858542 + 0,486138i	21,858578 + 0,488020i	0,00188181
3	61,349731+0,495168i	61,349733+0,495847i	0,00067940
4	199,528965+0,498527i	199,528965+0,498736i	0,00020897
5	120,570749+0,497556i	120,570749+0,497902i	0,00034587
6	298,225704+0,499015i	298,225704+0,499155i	0,00013979
7	416,661356+0,499296i	416,661356+0,499396i	0,00010004
8	554,836068+0,499471i	554,836068+0,499547i	0,00007512
9	712,749905+0,499589i	712,749905+0,499647i	0,00005847
10	890,402901+0,499671i	890,402901+0,499718i	0,00004680
11	1087,795074+0,499731i	1087,795074+0,499769i	0,00003831
12	1304,926435+0,499775i	1304,926435+0,499807i	0,00003193
13	1541,796990+0,499810i	1541,796990+0,499837i	0,00002703
14	1798,406743+0,499837i	1798,406743+0,499860i	0,00002317
15	2074,755697+0,499859i	2074,755697+0,499879i	0,00002008
16	2370,843854+0,499876i	2370,843854+0,499894i	0,00001758
17	2686,671216+0,499891i	2686,671216+0,499906i	0,00001551
18	3022, 237783 + 0, 499903i	3022, 237783 + 0, 499917i	0,00001379
19	3377,543556+0,499913i	3377, 543556 + 0, 499926i	0,00001234
20	3752,588535+0,499922i	3752,588535+0,499933i	0,00001110
21	4147, 372722 + 0, 499929i	4147,372722+0,499939i	0,00001005
22	4561,896116+0,499936i	4561,896116+0,499945i	0,00001005
23	4996, 158717 + 0, 499941i	4996, 158717 + 0, 499950i	0,00000834
24	5450, 160527 + 0, 499946i	5450, 160527 + 0, 499954i	0,00000765
25	5923,901544+0,499951i	5923,901544+0,499958i	0,00000705
26	6417,381770+0,499954i	6417,381770+0,499961i	0,00000651
27	6930,601203+0,499958i	6930,601203+0,499964i	0,00000607
28	7463,559845+0,499961i	7463,559845+0,499966i	0,00000564
29	8016, 257696 + 0, 499963i	8016, 257696 + 0, 499969i	0,00000582
30	8588,694754+0,499966i	8588,694754+0,499971i	0,00000546
31	9180,871022+0,499968i	9180,871022+0,500107i	0,00013933

28 С.И. Кадченко

Изменим правую часть уравнения (10) и восстановим приближенные значения функции p(s) в узловых точках $\{s_n\}_{n=1}^{m_0}$. В табл. 2 приведен пример расчетов при $\widetilde{f}(x_n) = \beta_n - \mu_n - 0, 2 - 0, 1i, \ n = \overline{1, m_0}$.

Таблица 2

n	s_n	$\widetilde{p}(s_n)$	$\gamma(s_n)$
1	0,0000	-0,382389 - 0,282987i	0,013575
2	0,0333	-0,334504-0,235054i	0,000870
3	0,0667	-0,273961-0,174422i	0,001278
4	0,1000	-0,207430-0,107782i	0,002520
5	0,1333	-0,207430-0,107782i	0,001078
6	0,1667	-0,068987+0,030896i	0,000322
7	0,2000	0,000016+0,100016i	0,000587
8	0,2333	0,067325+0,167436i	0,000249
9	0,2667	0,131982+0,232196i	0,000212
10	0,3000	0,193169+0,293474i	0,000273
11	0,3333	0,250220+0,350603i	0,000042
12	0,3667	0,302565+0,403011i	0,000026
13	0,4000	0,349810 + 0,450300i	0,000048
14	0,4333	0,391633 + 0,492152i	0,000093
15	0,4667	0,427903+0,528431i	0,000148
16	0,5000	0,458548+0,559068i	0,000175
17	0,5333	0,483687+0,584180i	0,000200
18	0,5667	0,503493+0,603942i	0,000184
19	0,6000	0,518318 + 0,618705i	0,000217
20	0,6333	0,528009 + 0,627446i	0,000250
21	0,6667	0,528280 + 0,627826i	0,000244
22	0,7000	0,528563 + 0,628875i	0,000245
23	0,7333	0,530344+0,630007i	0,000265
24	0,7667	0,530358+0,629693i	0,000258
25	0,8000	0,533227 + 0,633008i	0,000251
26	0,8333	0,534701+0,633834i	0,000280
27	0,8667	0,534791+0,635014i	0,000271
28	0,9000	0,535295+0,634538i	0,000256
29	0,9333	0,536001+0,635901i	0,000277
30	0,9667	0,537608 + 0,637731i	0,000283
31	1,0000	0,537750+0,637764i	0,000287

Здесь $\widetilde{p}(s_n)$ — приближенное значение функции p(s) в узловых точках s_n .

Величины $\gamma_n=|\widetilde{f}(x_n)-\int_a^b K(x_n,s)\widetilde{p}(s)ds|$ определяют поточечную абсолютную погрешность решения. Невязка, найденная в узловых точках s_n приближенного решения $\widetilde{p}(s_n)$, равна $||A\widetilde{p}-\widetilde{f}||_{L_2}=0,003011$. Параметр регуляризации $\alpha=0,000815$ при численном решении интегрального уравнения Фредгольма первого рода (10) методом регуляризации Тихонова вычислялся с помощью метода невязки.

Заключение

В работе разработан численный метод решения обратных спектральных задач для возмущенных самосопряженных операторов. В среде Марlе написан пакет программ, позволяющий восстанавливать потенциал p(x) по спектральным характеристикам оператора A, порожденного дифференциальным выражением l[y] = -y'' + p(x) в гильбертовом пространстве $L_2(a,b)$. Метод достаточно прост в применении. Им с успехом могут пользоваться исследователи, не имеющие достаточных знаний в области спектрального анализа.

Литература

- [1] Новый метод приближенного вычисления первых собственных чисел спектральной задачи гидродинамической устойчивости течения Пуазейля в круглой трубе / В.В. Дубровский [и др.] // ДАН России. 2001. Т. 380. № 2. С. 160–163.
- [2] Новый метод приближенного вычисления первых собственных чисел спектральной задачи Орра—Зомерфельда / В.В. Дубровский [и др.] // ДАН России. 2001. Т. 378. № 4. С. 443–446.
- [3] Вычисление первых собственных значений задачи гидродинамической устойчивости течения вязкой жидкости между двумя вращающимися цилиндрами / В.А. Садовничий [и др.] // Дифференц. уравнения. 2000. Т. 36. № 6. С. 742–746.
- [4] Кадченко С.И. Вычисление сумм рядов Релея Шредингера возмущенных самосопряженных операторов // Журн. вычисл. математики и мат. физики. 2007. Т. 47. № 9. С. 1494–1505.
- [5] Кадченко С.И. Метод регуляризованных следов // Вестник Юж-Урал. гос. ун-та. Сер.: Математическое моделирование и программирование. 2009. № 37(170). Вып. 4. С. 4–23.
- [6] Кадченко С.И., Рязанова Л.С. Численный метод нахождения собственных значений дискретных полуограниченных снизу операторов // Вестник Юж-Урал. гос. ун-та. Сер.: Математическое моделирование и программирование. 2011. № 17(234). Вып. 8. С. 46–51.
- [7] Демидович Б.П., Марон И.А. Основы вычислительной математики. М.: Наука, 1966. 659 с.
- [8] Садовничий В.А. Теория операторов: учеб. для вузов: 3-е изд., стер. М.: Высш. шк., 1999. 368 с.
- [9] Тихонов А.Н. О решении некорректно поставленных задач и методе регуляризации // ДАН СССР. 1943. Т. 39. № 5. С. 501–505.
- [10] Верлань А.Ф., Сизиков В.С. Интегральные уравнения: методы, алгоритмы, программы Киев: Наукова думка, 1986. 542 с.

Поступила в редакцию 3/VI/2013; в окончательном варианте — 3/VI/2013.

30 С.И. Кадченко

NUMERICAL METHOD FOR THE SOLUTION OF INVERSE PROBLEMS GENERATED BY PERTURBATIONS OF SELF-ADJOINT OPERATORS BY METHOD OF REGULARIZED TRACES

© 2013 S.I. Kadchenko²

In the article a new method for the solution of inverse problems generated by perturbations of self-adjoint operators on their spectral characteristics is developed. The method was tested on inverse problems for Sturm-Liouville problems. The results of numerous calculations showed the computational efficiency of the method.

Key words: inverse spectral problem, perturbation theory, self-adjoint operators, eigen values, eigen functions, incorrectly formulated problems.

Paper received 3/VI/2013. Paper accepted 3/VI/2013.

²Kadchenko Sergey Ivanovich (kadchenko@masu.ru), the Dept. of Equations of Mathematical Physics, Southern Ural State University, Chelyabinsk, 454080, Russian Federation.